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Abstract—The problem of spurious radiation from electronic
packages is considered in this paper by investigating the power
radiated from microstrip etches that are excited by arbitrarily -
Iocated current sources, and terminated by complex loads at

both ends. The first step in the procedure is to compute the
current distribution on the microstrip line by using the method

of moments (MoM). Two novel contributions of this paper are:

(i) employing the recently-derived closed-form Green’s func-
tions in the spatial domain that permit an efficient computation

of the elements of the MoM matrix; (ii) incorporating complex

load terminations in a convenient manner with virtually no in-

crease in the computation time. The computed current distri-

bution is subsequently used to calculate the spurious radiated
power and the result is compared with that derived by using an
approximate, transmission line analysis.

I. INTRODUCTION

oNE OF THE most commonly-used numerical tech-

niques for solving electromagnetic problems is the

method of moments (MoM), which is based upon the

transformation of an olperator equation into a matrix equa-

tion [1]. Although the MoM is preferred over differential

equation methods for the microstrip circuits and radiation

problems because it is relatively efficient in terms of com-

putation time, MoM is still quite time-consuming to use

owing to the oscillatory nature and slow convergence of

the integrals involved. One approach to alleviating the

above difficulties is to employ closed-form Green’s func-

tions in the spatial domain, that can speed up the com-

putation of the MoM matrix elements for planar micro-

strip structures by several orders of magnitude as com-

pared to the Sommetfeld integral or spectral domain

method. Closed-form Green’s functions in the spatial do-

main have been derived recently for microstrip geome-

tries on a thick substrate by Chow et al. [2]-[3], and ex-

tended to general microstrip geometries with a substrate

and a superstrata of arbitrary thickness by Aksun and Mit-

tra [4]. Once the improper and infinite range integrals for

the Green’s functions have been expressed in closed-

forms, the remaining integrals need be computed only

over finite supports associated with the basis and testing

functions. In this paper, we present the application of the
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closed-form Green’s functions to the problem of spurious

radiation calculation from an interconnect that is typically

modeled as a microstrip line fed by a current source iand

terminated by complex loads at both ends. Our objective

is to compute the current distribution on the line and the

level of spurious radiation, as functions of the lengthl of

the line and the load impedances, under the assumption

that both the location of the current source and the com-

plex load impedances terminating the line are arbitrary.

The current distribution on a microstrip line is calcu-

lated in Section II of this paper by using the Galerkin’s

method in the spatial domain that incorporates the closed-

form Green’s functions in the MoM matrix computation.

We begin by presenting a brief description of the applic-

ation of the MoM and the derivation of a set of linear

equations for computing the current distribution on a mi-

crostrip line fed by a localized current source. Since the

current density on the line is expanded in terms of basis

functions in the context of MoM, the choice of these func-

tions is important from the point of view of the conver-

gence of the integrals involved [5], and we include a brief

discussion of this issue in this section. Next, we compute

the current distributions for various lengths and load

impedances and compare these results with those calcu-

lated by using an approximate transmission line (TL)

model for the problem.

In Section 111, the level of spurious radiation, which is

defined as the radiated power crossing the plane parallel

to the plane of the microstrip line, is calculated by making

use of the current distribution obtained in the previous

section. The results for the radiated power for some rep-

resentative termination impedances are given as functions

of the line length of the microstrip etch.

II. CURRENT DISTRIBUTION ON A MICROSTRIP LINE

TERMINATED BY COMPLEX LOADS

Fig. 1 shows the geometry of a microstrip line feel by

an arbitrarily-located current source and terminated by

complex impedances at both ends. The substrate is as-

sumed to be infinitely wide in the x- and y-directions with

a thickness ~1 and a relative permittivity erl. The sulper-

strate above is air for this example.

A. Formulation of the Problem

The electric field along the line can be expressed in

terms of the surface current density J and the vector ;and

scalar Green’s functions, G:. and G~, respectively, as fol-
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Fig. 1. Geometry of a microstrip line terminated by complex loads.

lows:

EX=–ju G~!*JX+$&(Gq *V-J), (1)
JW 8X

where * implies convolution. The derivation of the closed

form expressions for the Green’s functions have been de-

scribed in detail in [4] and will be omitted here. In the

above equation we have assumed that the y-component of

the current density is negligible, which is justified be-

cause the width of the microstrip line w is much smaller

than the wavelength in the dielectric medium. Next, we

express the x-directed current density in terms of the basis

functions as

JX(X, y) = ~ ZmJX~(x,y) + J.(x, y) (2)
n

where In is the unknown coefficient of the basis function

and J. is the basis function associated with the current

source. The choices of these basis functions will be de-

tailed in the next section from the convergence point of

view. Upon substituting (2) into (1), and testing the re-

sulting equations with the basis functions JX~, i.e., fol-

lowing the Galerkin’s procedure with a suitable definition

of inner product, we obtain the following algebraic equa-

tion for coefficients 1. for each m:

[
~ In (J.., G:, “ J.. ) + $ J.., :

C$*:JW

= – (JX~, G;. * J,) – $ . Jxw
wq*$J$)

(3)

The number of equations, i.e., m, must be commensurate

with the number of unknowns n, or additional conditions

must be imposed in order that the resultant matrix is square

and the solution for the coefficients I. is unique.

B. Choices of Basis Functions

It is well-known that the choice of the basis and testing

functions plays an important role in determining the rate

of convergence of the integrals associated with the mo-

ment method matrix (3). An improper choice can lead to

non-convergent integrals [5] and, consequently, erro-

neous results [6]. After a thorough examination of the

convergence of the integrals involved in the MoM matrix i-

the basis and testing functions must satisfy the following

criteria [5]: (i) In the direction of the polarization of the

current, the sum of the order of the differentiability of the

basis and testing functions must be equal to or greater

than one; (ii) in the orthogonal direction of the polariza-

tion of the current, any piecewise continuous function or

even functions with singularities of the order of less than

one are admissible.

In view of the above criteria, the basis functions, apart

from those that represent the source and load currents, are

chosen to be rooftops, which are triangular functions in

the longitudinal direction, uniform in the transverse di-

rection, and are defined mathematically as

[

[
~ l–

lx - mhx I

1
Iyl s w/2

w

JX~(x, y) =
(m – l)h~< x s (m + l)hX

o elsewhere

(4)

where 2hX is the support of the basis functions (see Fig.

2(a)).

The source and load contributions to the current density

on the microstrip line are taken into account by employing

suitable basis functions for them and relating them to the

other equations. The basis functions for the current dis-

tribution associated with the source and loads are given

by

(5a)
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I.N ba+l lNr tions JXn, as in (4), (3) can be rewritten as
--------------------

l— 2hX
I

X=.*
1

‘x=
(a)

%

X=o
(b)

LM.l lNr+l

(c)

Fig. 2. Basis functions representing the current density (a) on the line, (b)

at the source, and (c) at the load terminals.

and are plotted in Fig. 2(b) and (c), respectively. These

basis functions have been chosen to be compatible with

the rooftops (4), which have already been employed to

represent the current density on the microstrip line. How-

ever, these functions are piecewise continuous while the

rooftops are piecewise differentiable. Consequently, the

integrals corresponding to the basis functions of the source

and loads in (3) would be divergent unless we impose cer-

tain constraints that render them convergent. We will ad-

dress this question next.

The problem with using piecewise continuous functions

as basis functions for the current density is that, upon dif-

ferentiation, they give rise to infinite, nonphysical charge

density distributions. However the integrals containing

these basis functions and their derivatives do become con-

vergent once these singularities are removed. This

prompts us to examine the question whether or not it is

legitimate to ignore the impulse functions arising from the
differentiations of the piecewise-continuous basis func-

tions.

For the source basis function (5a), the principle of con-

servation of charge at the junction x = O, where the cur-

rent-carrying probe is connected to the microstrip line,

implies that the charge density cannot be singular. We can

similarly argue that the divergence of the current at the

load terminals must be finite. In view of this, we conclude

that the singularities in the derivatives of the source and

load basis functions are non-physical and should therefore

be ignored wherever thley appear as a result of differentia-
tion of the current.

If we choose the basis functions given above, and ig-

nore the singularities generated by taking the divergence

of the current, we can justify the step of integration by

parts in (3). Then, by transferring the derivatives in front

of the convolution integrals in (3) over to the basis func-

N,+l

[ (
~ In (Jxm,G:x * Jxn) – $ : J.M,

n=–NI–l

“(Gq*:JJl
4;JX. (%*$Js))= – (J.m, G~ * J,) + L

m= —N1,. . ..Nr (6)

In the above equation the number of equations (Nl +

N, + 1) is two less than the number of unknowns (Nl +

N, + 3). However, we can supplement these missing ccm-

ditions by enforcing the necessary boundary conditions at

the load terminals. The procedure for doing this is de-

tailed in the next section.

Each of the inner-product terms in (6) is a four-dimen-

sional integral, provided that the closed-form Green’s

functions are used. Since the numerical integration a,f a

four-dimensional integral is quite expensive, even though

this integration is required to be carried out only oven- a

finite range, the convolution over the Green’s function and

the basis function is transferred to the two basis functions

involved in each term. If the basis functions have been

chosen such that their convolution can be performed an-

alytically, which is the case for the choice of the basis

functions given in (4), (5a), and (5b), the inner produ~cts

in (6) are reduced to double integrals over finite domains,

C. Supplemental Equations for the Load Basis

Functions

In order to relate the coefficients of the load basis func-

tions to those of the other basis functions, we need to ilm-

pose two boundary conditions, each of which is related to

the complex load impedances at the two ends. Since,, at

the terminations, the load impedance and the terminal

current are related by the voltage difference between the

line and the ground plane, these voltages can be expressed

in terms of the impedances of the loads, the coefficients

of the load basis functions, and the coefficients of the other

basis functions used in the representation of the current

on the microstrip line.

Here, we will investigate two different approaches to

deriving the supplementary equations, the first of which

is based on a rigorous definition of voltage in terms of

field components, whhe the second employs a transmis-

sion line analysis using the current and voltage waves.

In the rigorous approach, the voltages at the load ter-

minals is defined by

!
o

V(x = –XJ = dz EZI(X = –xl, y = O, z) (7a)
–dl

s

o

V(x = Xr) = _d, dz E,l(x = X,, y = 0, Z) (7b)
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where EZ1 is the spatial domain representation of the

z-polarized electric field in the substrate. The z-component
of the electric field in the spectral domain can be obtained

in terms of the basis functions on the microstrip line and

the z-directed current on the probe as

(8)

where — implies Fourier transform and superscript E de-

notes electric field, i.e., the Green’s functions in (8) are

for the electric fields. It should be noted that the z-directed

current on the probe is employed in the calculation of the

z-polarized electric fields, although it has not been used
for the calculation of the current distribution on the line

(see (6)). The x-polarized electric field, which is used to

obtain (6), is the secondary field for the z-directed cur-

rent. At this point, it becomes obvious that there are two

major disadvantages of using this rigorous approach to

obtain the relationship between the load impedances and

the coefficients of the basis functions. The first of these is

the need to use the probe current which requires a good

model for the source connection [7], while the second is

the necessity to apply the computationally -expensive step

of inverse Fourier transform of the z-polarized electric

field (8) for each of the basis functions in order to obtain

its spatial domain representation. In view of this, we pro-

pose a simple and computationally efficient approach

based on the transmission line analysis to relate the load

impedances to the surface current density on the line.

In the transmission line analysis, it is well-known that

the total voltage V(x) and total current I(x) on the line are

related by the following first-order differential equations:

all(x) — – Yv(x).—
(ix

dV(x)
— = –Zz(x)

&

(9a)

(9b)

where Y = j~ /20 and Z = j(lZO are the series impedance

and shunt admittance per unit length of the line, respec-

tively. The characteristic impedance 20 and propagation

constant ~ of the line are calculated by using empirical

formulas based on a quasi-static analysis [8]. If the deriv-

atives in (9a) and (9b) are approximated by finite differ-

encing and the resulting equations are related to each other

for the load terminals at x = xl and x = x,, the following
equations are obtained (see Fig. 2(a) and 2(c)):

(1 + j&zx~ - ~) I.N,.l - Z.N, = O (lOa)

(
fi2h;

–ZNr + 1 + j(lh.’> – y ) IN, + ~ = O (lOb)

where V(–xl)/Z(—xl) = –Z~l and V(xr)/Z(xr) = .% are
employed. Note that (10a) and ( 10b) are dependent upon

the finite-difference approximation; for example, here we

have used central differencing for (9a) and forward differ-

encing for (9b) to obtain (10a).

By using the (lOa) and ( 10b) together with the equa-

tions given in (6), the current distribution on the micro-

strip line terminated by the complex load impedances Z~l

and ZL, is obtained. The current distribution on a trans-

mission line fed by a unit amplitude current source at x =

O is also calculated in closed-form by using the TL ap-

proach [9], and is given by

f 1 1 + e ‘j2k’r rL,

– ~ 1 – rLrrLl e ‘J2~(’1+”)

. [elkx _ rLle -MX + ~i)l

–Xlsx<o

JX(X) = {
1 1 + e ‘J2k” r~l

– ~ 1 – rLr rLl e ‘~2~(X’““)

. [_ e jkx + rLre -jk(~ - 2.,)1

( O<xsxr (11)

where r~l and r~, are the voltage reflection coefficients

defined on the load terminals x = –xl and x = x,, re-

spectively. The results that are obtained by the MoM and

the transmission line approach (11) are presented and

compared in the next section.

D. Results and Discussions on the Current Distribution

The following parameters have been chosen for the ex-

amples given below: the dielectric constant of the medium

Erl = 4.0; the ratio of the width of the microstrip line w

to the thickness dl of the substrate = 4.0; the thickness

of the substrate dl = 8.0 roils (0.203 mm); and the fre-

quency of operation = 1.0 GHz. The current source is

located at 1 cm away from the left edge, and has a mag-

nitude of 2A.

The current distribution on a line can often be predicted

intuitively for standard terminations e.g. a match, open-

circuit or a short-circuit. This prompts us to use these

cases as examples of our calculations. As expected, the

magnitude of the current distribution becomes zero at the

ends of the line while the phase shows a standing wave

type of behavior and, as shown in Fig. 3(a) and (b), it
switches between 0° and 180°. Excellent agreement is

observed between the current distributions calculated by

the TL approach and the MoM for a microstrip line ter-

minated at both ends by matched loads, open or short cir-

cuits, excepting in the vicinity of the resonance for the
last two cases. This behavior is attributable to the differ-

ence in the resonant lengths of the line predicted by the

MoM and the TL approaches. As an example of a com-

plex termination, we have chosen a resistance of 20 K in

parallel with a 8 pF capacitance, which represents the typ-

ical input impedance of a TTL circuit. The current distri-

butions for this termination have been calculated by using

both the TL and the MoM approaches, and are exhibited

in Fig. 4. It is observed that the magnitude of the current

calculated by the TL approach is slightly different from

that of the MoM, because, as mentioned above, the length
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Fig. 3. Current distributions obtained by using MoM and TL approaches

for open-circuited terminations; (a) magnitude, (b) phase.

of line is close to the resonant length for this load termi-

nation.

In the previous section, we stated that the propagation

constant of the line is needed in (10a) and ( 10b) for the

inclusion of the terminating loads in the formulation. This

constant is calculated by using an empirical formula with

approximately a 1 percent error margin. We have inves-

tigated the sensitivity of the current distribution to a

change in the effective dielectric constant which, in turn,

is directly related to the propagation constant. In Fig. 5

we present the plot of the current distribution on a mi-

crostrip line 12-cm long and terminated by complex loads

of 8 pF /20 Kil for two values of the effective dielectric

constants, viz., Erl = 3.2 and C,l = 3.3, which are in the

vicinity of the value obtained from the empirical formula

(E,l = 3.26). It can be observed from Fig. 5 that the cur-

rent distribution remains virtually unaffected by the small

variation of the effective dielectric constant.

A study of the current distributions for different lengths

of the line leads us to conclude that, in general, the TL
approach predicts the current distribution reasonably well,

provided that the frequency of operation is not too close

to the resonant frequency of the resonator represented by

the truncated line. However, as we will see in the next

section, the spurious radiated power is the highest at res-

onance.

-20246810 12
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Fig. 4. Current distribution obtained by using MoM and TL approaches
for a complex load termination Z. = (20 K//8 PF); (a) magnitude, (b)
phase.
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Fig. 5. Current distributions obtained by using the MoM for a complex
load termination Z~ = (20 K//8 pF) and for ~.ff = 3.2 and 3.3.

III. SPURIOUS RADIATION CALCULATION

Once the current distribution on the microstrip line has

been derived, whether by using the TL approach or the

MoM, the field distribution produced by the line currents

can be readily calculated, both in the near and far-field

regions, by using the field representations in terms of ap-

propriate Green’s functions. The spurious radiated power
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can then be obtained through the integration of the Poyn-

ting vector over a closed mathematical surface, e.g., a

rectangular box enclosing the microstrip line.

A. Formulation of the Problem

In this section, we will calculate the spurious radiation

defined as the total power crossing a plane parallel to the

plane of the substrate. The total power is expressed as

P=~Re
!!

ds” ExH*

s

~ Re22
H

(ix dy (ExH~ – EYH;) (12)

s

Since the calculation of the field components requires the

evaluation of a convolution integral for each basis func-

tion that is used to represent the current density on the

microstrip line, implementing (12) in the spatial domain

becomes computationally expensive. Therefore, the field

components used in (12) are transformed into the spectral

domain and the total power is expressed in terms of the

transform quantities as

co

[ HP=~Re $ dkx dkY [~x(kx, kY)fl;(kx, kY)

—m
\

– I@., QP;(L, Q

~
(13)

..

where the electric field in the spectral domain can be ob-

tained by multiplying the spectral domain Green’s func-

tions by the Fourier transform of the current distribution

on the microstrip line, which has been obtained in the pre-

vious section. Thus, the total power radiated can be writ-

ten as

– (Gg”) (@x.Jx)*]1 (14)

where the Green’s functions a~e obtained by the using im-
mittance approach [10], and given by

G:x = [~e COS2 4 + ~h sin2~]e -Aoz forz>O

(15a)

G$X = [(2’ – Zk) sin + cos @ ]e ‘j~~z forz>O

—
—

@“ = [(yT~()~h– y~Mo~’) sin ~ cos @]e ‘~km

forz>O (15C)

Gj = [(YT~O~~ sin2 @ + YTMo~h COS2 @]e ‘jkaz (15b)

forz>O (15d)

-40

-41

-46

-47
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Fig. 6. Radiated power as a function of the length of the line for matched
termination on both ends.

where YTEO, YTMOand YTE1, YTM1 are wave admittances in

the free space and in the “dielectric medium, respectively;

@ = tan-l (kY/k.); and,

2 =
–1

YTMO – jyTM1 cot (kzldl) ‘

~h = –1

YT~O – jYTE1 Cot (kzldl)
(16)

Since the value of z is greater than zero, the Green’s func-

tions (15a) -(15d) become decaying function: for a bulk

of the spectral components, and this leads to the rapid

convergence of the double integral (14).

B. Results and Discussions

In this part of the study, the length of the line is con-

sidered to be the independent variable while the spurious

radiated power is viewed as the dependent one. The di-

electric constant of the medium is 6,1 = 4.0, the width of

the line w to the thickness of the substrate dl ratio is 4.0,

and the thickness of the substrate is d, = 8.0 roils (.203

mm). The current source is again located 1.0 cm from the

left edge of the microstrip line; however, its amplitude is

normalized to 1 mA for the calculation of spurious ra-

diated power.

The spurious power, as defined by Equation (14), is

calculated for a microstrip line terminated by matched

loads, open circuits and short circuits at both terminals

and, a matched load cm the left and a complex load of 8
pF //20 KQ on the right terminal. The results are given in

Figs. 6, 7, 8, and 9, respectively. The radiation from a

microstrip line terminated by a pair of matched loads is

very small (see Fig. 6) as compared to those terminated

by other loads. The highest radiation occurs for the open-

circuited and the short-circuited transmission lines of res-

onant lengths. The radiated power has a sharp peak around

the resonance length of the line, and it becomes essen-

tially negligible for off-resonance lengths. For the com-

bination of matched and complex load terminations, Fig.

9, the total radiated power is slightly larger than that of

matched load termination case shown in Fig. 6.
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Fig. 7. Radiated power as a function of the length of the line for open-

circuit termination at both ends.
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Fig. 8. Radiated power as a function of the length of the line for short-
circuit termination at both ends.
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Fig. 9. Radiated power as a function of the length of the line for a matched
load and a complex load Z~ = (20 K//8 pF) terminations.

IV. CONCLUSIONS

The current distribution on a microstrip line, which is

fed by a current source at an arbitrary location and ter-

minated by complex loads at both ends, has been com-

puted by using the closed-form representations of the spa-

tial domain Green’s functions.

It has been found that the use of closed-form spatial

domain Green’s functions in the context of the method of

moments formulation reduces the computation time sig-

nificantly as compared to the conventional formulation in

the spectral domain. For instance, in a numerical experi-

ment with 40 roof-top basis functions, the computation

time for the current distribution is on the order of 50-60

CPU sec on the DECstation 5000/200 system when the

closed-form Green’s functions in the format given in [4]

are used, whereas it takes on the order of 10 CPU reins.

on CraylYMP for the same calculation using the spectral

domain approach. The method describ.d is quite general

and is useful for arbitrary geometrical disposition of the

microsttip etches, e.g., arbitrary bends, and not just

straight sections.

The investigation of the radiation leakage from a mi-

crostrip line terminated by complex loads has shown that

the highest radiation occurs when the length of the line is

near resonance, and the terminations are either open or

short circuits. It is also observed that a matched load ter-

mination at one of the terminals of the microstrip inter-

connect reduces the radiation leakage significantly, as

compared to the radiation levels for other terminations that

can cause resonances to occur.
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