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Estimation of Spurious Radiation from Microstrip
Etches Using Closed-Form Green’s Functions

M. Irsadi Aksun and Raj Mittra, Fellow, IEEE

Abstract—The problem of spurious radiation from electronic
packages is considered in this paper by investigating the power
radiated from microstrip etches that are excited by arbitrarily-
located current sources, and terminated by complex loads at
both ends. The first step in the procedure is to compute the
current distribution on the microstrip line by using the method
of moments (MoM). Two novel contributions of this paper are:
(i) employing the recently-derived closed-form Green’s func-
tions in the spatial domain that permit an efficient computation
of the elements of the MoM matrix; (ii) incorporating complex
load terminations in a convenient manner with virtually no in-
crease in the computation time. The computed current distri-
bution is subsequently used to calculate the spurious radiated
power and the result is compared with that derived by using an
approximate, transmission line analysis.

I. INTRODUCTION

NE OF THE most commonly-used numerical tech-

niques for solving electromagnetic problems is the
method of moments (MoM), which is based upon the
transformation of an operator equation into a matrix equa-
tion [1]. Although the MoM is preferred over differential
equation methods for the microstrip circuits and radiation
problems because it is relatively efficient in terms of com-
putation time, MoM is still quite time-consuming to use
owing to the oscillatory nature and slow convergence of
the integrals involved. One approach to alleviating the
above difficulties is to employ closed-form Green’s func-
tions in the spatial domain, that can speed up the com-
putation of the MoM matrix elements for planar micro-
strip structures by several orders of magnitude as com-
pared to the Sommerfeld integral or spectral domain
method. Closed-form Green’s functions in the spatial do-
main have been derived recently for microstrip geome-
tries on a thick substrate by Chow et al. [2]-[3], and ex-
tended to general microstrip geometries with a substrate
and a superstrate of arbitrary thickness by Aksun and Mit-
tra [4]. Once the improper and infinite range integrals for
the Green’s functions have been expressed in closed-
forms, the remaining integrals need be computed only
over finite supports associated with the basis and testing
functions. In this paper, we present the application of the
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closed-form Green’s functions to the problem of spurious
radiation calculation from an interconnect that is typically
modeled as a microstrip line fed by a current source and
terminated by complex loads at both ends. Our objective
is to compute the current distribution on the line and the
level of spurious radiation, as functions of the length of
the line and the load impedances, under the assumption
that both the location of the current source and the com-
plex load impedances terminating the line are arbitrary.

The current distribution on a microstrip line is calcu-
lated in Section II of this paper by using the Galerkin’s
method in the spatial domain that incorporates the closed-
form Green’s functions in the MoM matrix computation.
We begin by presenting a brief description of the appli-
cation of the MoM and the derivation of a set of linear
equations for computing the current distribution on a mi-
crostrip line fed by a localized current source. Since the
current density on the line is expanded in terms of basis
functions in the context of MoM, the choice of these func-
tions is important from the point of view of the conver-
gence of the integrals involved [5], and we include a brief
discussion of this issue in this section. Next, we compute
the current distributions for various lengths and load
impedances and compare these results with those calcu-
lated by using an approximate transmission line (TL)
model for the problem.

In Section III, the level of spurious radiation, which is
defined as the radiated power crossing the plane parallel
to the plane of the microstrip line, is calculated by making
use of the current distribution obtained in the previous
section. The results for the radiated power for some rep-
resentative termination impedances are given as functions
of the line length of the microstrip etch.

II. CURRENT DISTRIBUTION ON A MICROSTRIP LINE
TERMINATED BY COMPLEX LoaDs

Fig. 1 shows the geometry of a microstrip line fed by
an arbitrarily-located current source and terminated by
complex impedances at both ends. The substrate is as-
sumed to be infinitely wide in the x- and y-directions with
a thickness d, and a relative permittivity e,;. The super-
strate above is air for this example.

A. Formulation of the Problem

The electric field along the line can be expressed in
terms of the surface current density J and the vector and
scalar Green’s functions, G4 and G,, respectively, as fol-
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Fig. 1.- Geometry of a microstrip line terminated by complex loads.

lows:

E. = —jw G4 = J, + _ii(Gq *V -J), (D

Jw 0x
where * implies convolution. The derivation of the closed
form expressions for the Green’s functions have been de-
scribed in detail in [4] and will be omitted here. In the
above equation we have assumed that the y-component of
the current density is negligible, which is justified be-
cause the width of the microstrip line w is much smaller
than the wavelength in the dielectric medium. Next, we
express the x-directed current density in terms of the basis
functions as

Amw=§ammw+hmw )

where I, is the unknown coeflicient of the basis function
and J; is the basis function associated with the current
source. The choices of these basis functions will be de-
tailed in the next section from the convergence point of
view. Upon substituting (2) into (1), and testing the re-
sulting equations with the basis functions J,,,, i.e., fol-
lowing the Galerkin’s procedure with a suitable definition
of inner product, we obtain the following algebraic equa-
tion for coefficients I, for each m:

1 ) 3
EI[J Gi*xJ >+ I ,—|G *— >}
n n < xXm? xx xn > 0)2 Xm» 6x q ax ‘]xn

1 d d
= = {Jm> Gﬁx *Jy — ; * Jams a <Gq * EX_J.S')
(3)
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The number of equations, i.e., m, must be commensurate
with the number of unknowns 7, or additional conditions
must be imposed in order that the resultant matrix is square
and the solution for the coefficients /, is unique.

B. Choices of Basis Functions

It is well-known that the choice of the basis and testing
functions plays an important role in determining the rate
of convergence of the integrals associated with the mo-
ment method matrix (3). An improper choice can lead to
non-convergent integrals [5] and, consequently, erro-
neous results [6]. After a thorough examination of the

~ convergence of the integrals involved in the MoM matrix,

the basis and testing functions must satisfy the following
criteria [5]: (1) In the direction of the polarization of the
current, the sum of the order of the differentiability of the
basis and testing functions must be equal to or greater
than one; (ii) in the orthogonal direction of the polariza-
tion of the current, any piecewise continuous function or
even functions with singularities of the order of less than
one are admissible.

In view of the above criteria, the basis functions, apart
from those that represent the source and load currents, are
chosen to be rooftops, which are triangular functions in
the longitudinal direction, uniform in the transverse di-
rection, and are defined mathematically as

Ll-Eeml gy <
T ) = m— Dh, <= x< (m+ Dh,
0  elsewhere
@)
\zzvhere 2h, is the support of the basis functions (see Fig.
(@) ~

The source and load contributions to the current density
on the microstrip line are taken into account by employing
suitable basis functions for them and relating them to the |
other equations. The basis functions for the current dis-
tribution associated with the source and loads are given

by

—hXstO,{yiﬁg

1 x
I, ) = EQ“E> O=x=h,lyl =3 (52)
0 elsewhere
1x+ Nh, w
- hxl —~(Ny + Dh, < x = =N, |y| =7
1 x — N,h, w
JLoad(xs )’) = ‘; h thx =x= (Nr + 1)hx7 IY| = 5 (Sb)

0 elsewhere
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Fig. 2. Basis functions representing the current density (a) on the line, (b)
at the source, and (c) at the load terminals.

and are plotted in Fig. 2(b) and (c), respectively. These

basis functions have been chosen to be compatible with -

the rooftops (4), which have already been employed to
represent the current density on the microstrip line. How-
ever, these functions are piecewise continuous while the
rooftops are piecewise differentiable. Consequently, the
integrals corresponding to the basis functions of the source
and loads in (3) would be divergent unless we impose cer-
tain constraints that réender them convergent. We will ad-
dress this question next.

The problem with using piecewise continuous functions
as basis functions for the current density is that, upon dif-
ferentiation, they give rise to infinite, nonphysical charge
density distributions. However the integrals containing
these basis functions and their derivatives do become con-
vergent once these singularities are removed. This
prompts us to examine the question whether or not it is
_ legitimate to ignore the impulse functions arising from the
differentiations of the piecewise-continuous basis func-
tions.

For the source basis function (5a), the principle of con- .

servation of charge at the junction x = 0, where the cur-
rent-carrying probe is connected to the microstrip line,
implies that the charge density cannot be singular. We can
similarly argue that the divergence of the current at the
load terminals must be finite. In view of this, we conclude
that the singularities in the derivatives of the source and
load basis functions are non-physical and should therefore
be ignored wherever they appear as a result of differentia-
tion of the current.

If we choose the basis functions given above, and ig-
nore the singularities generated by taking the divergence
of the current, we can justify the step of integration by
parts in (3). Then, by transferring the derivatives in front
of the convolution integrals in (3) over to the basis func-
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tions J,,,, as in (4), (3) can be rewritten as

Nr+1 9

1
Z 1 In [<Jxm,G;x * an> - ";2‘ <a Jxm,

n=—Ni—
0
(G 3))]

1 d a
= - <Jxm, G;x * Js> + —(‘? <'a'; Jxma‘ <Gq * é;‘]s>>

m= =Ny -+, N, 6

In the above equation the number of equations (N, +
N, + 1) is two less than the number of unknowns (N, +
N, + 3). However, we can supplement these missing con-
ditions by enforcing the necessary boundary conditions at
the load terminals. The procedure for doing this is de-
tailed in the next section.

Each of the inner-product terms in (6) is a four-dimen-
sional integral, provided that the closed-form Green’s
functions are used. Since the numerical integration of a
four-dimensional integral is quite expensive, even though
this integration is required to be carried out only over a
finite range, the convolution over the Green’s function and
the basis function is transferred to the two basis functions
involved in each term. If the basis functions have been
chosen such that their convolution can be performed an-
alytically, which is the case for the choice of the basis
functions given in (4), (52), and (5b), the inner products
in (6) are reduced to double integrals over finite domains. .

C. Supplemental Equations for the Load Basis
Functions

In order to relate the coefficients of the load basis func-
tions to those of the other basis functions, we need to im-
pose two boundary conditions, each of which is related to
the complex load impedances at the two ends. Since, at
the terminations, the load impedance and the terminal
current are related by the voltage difference between the
line and the ground plane, these voltages can be expressed
in terms of the impedances of the loads, the coefficients
of the load basis functions, and the coefficients of the other
basis functions used in the representation of the current
on the microstrip line.

Here, we will investigate two different approaches to
deriving the supplementary equations, the first of which
is based on a rigorous definition of voltage in terms of
field components, while the second employs a transmis-
sion line analysis using the current and voltage waves.

In the rigorous approach, the voltages at the load ter-
minals is defined by

0
Vix = —xp) = S d dzE (x = —x1,y =0,2) (7a)
—dal

0
Vix = x,) = S_d dzE x =x,y =0, 2 (7b)
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where E,; is the spatial domain representation of the
z-polarized electric field in the substrate. The z-component
of the electric field in the spectral domain can be obtained
in terms of the basis functions on the microstrip line and
the z-directed current on the probe as

El = Gijx + GzEzjz (8)

where ~ implies Fourier transform and superscript E de-
notes electric field, i.e., the Green’s functions in (8) are
for the electric fields. It should be noted that the z-directed
current on the probe is employed in the calculation of the
z-polarized electric fields, although it has not been used
for the calculation of the current distribution on the line
(see (6)). The x-polarized electric field, which is used to
obtain (6), is the secondary field for the z-directed cur-
rent. At this point, it becomes obvious that there are two
major disadvantages of using this rigorous approach to
obtain the relationship between the load impedances and
the coeflicients of the basis functions. The first of these is
the need to use the probe current which requires a good
model for the source connection [7], while the second is
the necessity to apply the computationally-expensive step
of inverse Fourier transform of the z-polarized electric
field (8) for each of the basis functions in order to obtain
its spatial domain representation. In view of this, we pro-
pose a simple and computationally efficient approach
based on the transmission line analysis to relate the load
impedances to the surface current density on the line.

In the transmission line analysis, it is well-known that
the total voltage V(x) and total current /(x) on the line are
related by the following first-order differential equations:

% = —YWV(x) (9a)
avix)
v ZI(x) (9b)

where Y = jB/Z, and Z = jBZ, are the series impedance
and shunt admittance per unit length of the line, respec-
tively. The characteristic impedance Z, and propagation
constant 8 of the line are calculated by using empirical
formulas based on a quasi-static analysis [8]. If the deriv-
atives in (9a) and (9b) are approximated by finite differ-
encing and the resulting equations are related to each other
for the load terminals at x = x; and x = x,, the following
equations are obtained (see Fig. 2(a) and 2(c)):

Z *hi
<1 + ]6hx —ZL—OI - 'BTJE > I—N1—1 - I—Nl =0 (103.)

o Ziy B
~Iy, + (1 + jBh, =2 — ==
Nr < .]:8 X Zo )

>IN,+1 =0 (10b)

where V(—x,)/I(—x)) = —Z;; and V(x,)/I(x,) = Z;, are
employed. Note that (10a) and (10b) are dependent upon
the finite-difference approximation; for example, here we
have used central differencing for (9a) and forward differ-
encing for (9b) to obtain (10a).
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By using the (10a) and (10b) together with the equa-
tions given in (6), the current distribution on the micro-
strip line terminated by the complex load impedances Z;,
and Z;, is obtained. The current distribution on a trans-
mission line fed by a unit amplitude current source at x =
0 is also calculated in closed-form by using the TL ap-
proach [9], and is given by

[ 1 1471,
_E 1 — IerFLle—jZk(x1+xr)

. [ejkx _ Ilee —jk(x+2x1)]

—x =x=<0

J ) = ¢
* _l 1+ e'ﬂk’” FL]
21— FLr FLI [4 —J2ky + x0)
. [_ejkx + FLre —jk(x—ZXr)]
\ 0<x<zx (11)
where I';; and T';, are the voltage reflection coeflicients
defined on the load terminals x = —x; and x = x,, re-

spectively. The results that are obtained by the MoM and
the transmission line approach (11) are presented and
compared in the next section.

D. Results and Discussions on the Current Distribution

The following parameters have been chosen for the ex-
amples given below: the dielectric constant of the medium
€1 = 4.0; the ratio of the width of the microstrip line w
to the thickness d; of the substrate = 4.0; the thickness
of the substrate d; = 8.0 mils (0.203 mm); and the fre-
quency of operation = 1.0 GHz. The current source is
located at 1 cm away from the left edge, and has a mag-
nitude of 2A.

The current distribution on a line can often be predicted
intuitively for standard terminations e.g. a match, open-
circuit or a short-circuit. This prompts us to use these
cases as examples of our calculations. As expected, the
magnitude of the current distribution becomes zero at the
ends of the line while the phase shows a standing wave
type of behavior and, as shown in Fig. 3(a) and (b), it
switches between 0° and 180°. Excellent agreement is
observed between the current distributions calculated by
the TL approach and the MoM for a microstrip line ter-
minated at both ends by matched loads, open or short cir-
cuits, excepting in the vicinity of the resonance for the
last two cases. This behavior is attributable to the differ-
ence in the resonant lengths of the line predicted by the
MoM and the TL approaches. As an example of a com-
plex termination, we have chosen a resistance of 20 K in
parallel with a 8 pF capacitance, which represents the typ-
ical input impedance of a TTL circuit. The current distri-
butions for this termination have been calculated by using
both the TL and the MoM approaches, and are exhibited
in Fig. 4. It is observed that the magnitude of the current
calculated by the TL approach is slightly different from
that of the MoM, because, as mentioned above, the length
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Fig. 3. Current distributions obtained by using MoM and TL approaches
for open-circuited terminations; (a) magnitude, (b) phase.

of line is close to the resonant length for this load termi-
nation. '

In the previous section, we stated that the propagation
constant of the line is needed in (10a) and (10b) for the
inclusion of the terminating loads in the formulation. This
constant is calculated by using an empirical formula with
approximately a 1 percent error margin. We have inves-
tigated the sensitivity of the current distribution to a
change in the effective dielectric constant which, in turn,
is directly related to the propagation constant. In Fig. 5
we present the plot of the current distribution on a mi-
crostrip line 12-cm long and terminated by complex loads
of 8 pF /20 KQ for two values of the effective dielectric
constants, viz., ¢,; = 3.2 and ¢,; = 3.3, which are in the
vicinity of the value obtained from the empirical formula
(¢,1 = 3.26). It can be observed from Fig. 5 that the cur-
rent distribution remains virtually unaffected by the small
variation of the effective dielectric constant.

A study of the current distributions for different lengths
of the line leads us to conclude that, in general, the TL
approach predicts the current distribution reasonably well,
provided that the frequency of operation is not too close
to the resonant frequency of the resonator represented by
the truncated line. However, as we will see in the next
section, the spurious radiated power is the highest at res-
onance.
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Fig. 4. Current distribution obtained by using MoM and TL approaches
for a complex load termination Z, = (20 K//8 pF); (a) magnitude, (b)
phase.
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Fig. 5. Current distributions obtained by using the MoM for a complex
load termination Z, = (20 K //8 pF) and for e, = 3.2 and 3.3.

III. Spurious RADIATION CALCULATION

Once the current distribution on the microstrip line has
been derived, whether by using the TL approach or the
MoM, the field distribution produced by the line currents
can be readily calculated, both in the near and far-field
regions, by using the field representations in terms of ap-
propriate Green’s functions. The spurious radiated power
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can then be obtained through the integration of the Poyn-
ting vector over a closed mathematical surface, e.g., a
rectangular box enclosing the microstrip line.

A. Formulation of the Problem

In this section, we will calculate the spurious radiation
defined as the total power crossing a plane parallel to the
_ plane of the substrate. The total power is expressed as

P

I

%ReSSds-ExH*
S

n

3 Re H dx dy (EH} — E,H}) (12)

N

Since the calculation of the field components requires the
evaluation of a convolution integral for each basis func-
tion that is used to represent the current density on the
microstrip line, implementing (12) in the spatial domain
becomes computationally expensive. Therefore, the field
components used in (12) are transformed into the spectral
domain and the total power is expressed in terms of the
transform quantities as

o

1 A A
o | | a1, o366 )

— 0

E k., k)H k., k) a3)

where the electric field in the spectral domain can be ob-
tained by multiplying the spectral domain Green’s func-
tions by the Fourier transform of the current distribution
on the microstrip line, which has been obtained in the pre-
vious section. Thus, the total power radiated can be writ-
ten as

o

1
SRei H die, diey [(G 1) (G LTy

AE FyGH T
- (ny‘]x) (Gxxe)*] (14)
where the Green’s functions are obtained by the using im-
mittance approach [10], and given by

GE = [Z°cos® ¢ + Z"sin® ¢ple 7 forz > 0
(152)
Gfx =[(Z° — Z"ysin ¢ cos ¢ Je 7 forz > 0

——

GH = [(YreZ" — YimoZ®) sin ¢ cos ple T

forz > 0 (15¢)
G = [(YrgeZ" sin® ¢ + YryoZ” cos® gle 74 (15b)
forz > 0 (15d)
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Fig. 6. Radiated power as a function of the length of the line for matched
termination on both ends.

where Yrgo, Yrmo and Yrg;, Y1y are wave admittances in
the free space and in the dielectric medlum respectively;
¢ = tan”' (k,/k,); and,

. -1
VAR - ;
Yrmo — j¥rw cot (kud))
. —1
Zh = (16)

Yrro — J¥e;1 cot (k;dy)

Since the value of z is greater than zero, the Green’s func-
tions (15a)-(15d) become decaying functions for a bulk
of the spectral components, and this leads to the rapid
convergence of the double integral (14).

B. Results and Discussions

In this part of the study, the length of the line is con-
sidered to be the independent variable while the spurious
radiated power is viewed as the dependent one. The di-
electric constant of the medium is ¢, = 4.0, the width of
the line w to the thickness of the substrate d; ratio is 4.0,
and the thickness of the substrate is d; = 8.0 mils (.203
mm). The current source is again located 1.0 cm from the
left edge of the microstrip line; however, its amphtude is
normalized to 1 mA for the calculatlon of spurlous ra-
diated power.

The spurious power, as defined by Equation (14); is
calculated for a microstrip line terminated by matched
loads, open circuits and short circuits at both terminals
and, a matched load on the left and a complex load of 8
pF //20 KQ on the right terminal. The results are given in
Figs. 6,7,8,and 9, respectively. The radiation from a
microstrip line terminated by a pair of matched loads is
very small (see Fig. 6) as compared to those terminated
by other loads. The highest radiation occurs for the open-
circuited and the short-circuited transmission lines of res-
onant lengths. The radiated power has a sharp peak around
the resonance length of the line, and it becomes essen-
tially negligible for off-resonance lengths. For the com-
bination of matched and complex load terminations, Fig.
9, the total radiated power is slightly larger than that of
matched load termination case shown in Fig. 6.
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IV. CONCLUSIONS

The current distribution on a microstrip line, which is
fed by a current source at an arbitrary location and ter-
minated by complex loads at both ends, has been com-
puted by using the closed-form representations of the spa-
tial domain Green’s functions.

It has been found that the use of closed-form spatial
domain Green’s fuiictions in the context of the method of
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moments formulation reduces the computation time sig-
nificantly as compared to the conventional formulation in
the spectral domain. For instance, in a numerical experi-
ment with 40 roof-top basis functions, the computation
time for the current distribution is on the order of 50-60
CPU sec on the DECstation 5000/200 system when the
closed-form Green’s functions in the format given in [4]
are used, whereas it takes on the order of 10 CPU mins.
on Cray/YMP for the same calculation using the spectral
dt)main approach. The method describ.d is quite general
and is useful for arbitrary geometrical disposition of the
microstrip etches, e.g., arbitrary bends, and not just
straight sections. v

The investigation of the radiation leakage from a mi-
crostrip line terminated by complex loads has shown that
the highest radiation occurs when the length of the line is
near resonance, and the terminations are either open:or
short circuits. It is also observed that a matched load ter-
mination at one of the terminals of the microstrip inter-
connect reduces the radiation leakage significantly, as
compared to the radiation levels for other terminations that
can cause resonances to occur.
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